An Improved Harris-SIFT Algorithm Based on Rotation-invariant LBP Operator

نویسندگان

  • Lei Yang
  • Yanyun Ren
  • Jiyuan Cai
  • Huosheng Hu
چکیده

Feature-points matching is an important concept in binocular stereo vision. The procession of multi-scale feature-points matching in classical Harris-SIFT algorithm is time-consuming and has high complexity when describing the feature-points. This paper proposed a new improved Harris-SIFT algorithm based on rotation-invariant LBP (Local binary patterns) operator. Firstly, the Harris operator is used to extract feature points from DOG (Difference of Gaussian) scale space. Then, the dominant direction of feature point is calculated and 81-dimensional rotation-invariant LBP descriptors are extracted when the rotation matching window is coordinated to this direction. At last, Best-Bin-First (BBF) algorithm is used to search the matching points between the two sets of feature points. Experimental results show that the proposed algorithm is lower time-consuming than classical Harris-SIFT algorithm and remains the similar matching correct rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Image Mosaic Method Based on SIFT Features of Line Segment

This paper proposes a novel image mosaic method based on SIFT (Scale Invariant Feature Transform) feature of line segment, aiming to resolve incident scaling, rotation, changes in lighting condition, and so on between two images in the panoramic image mosaic process. This method firstly uses Harris corner detection operator to detect key points. Secondly, it constructs directed line segments, d...

متن کامل

Remote Sensing Image Matching Algorithm Based on Harris and Sift Transform

Image matching is a key part of many remote sensing image processing and image analysis. The traditional gray correlation matching algorithm based on corner point because they do not have the rotational invariance requires manual intervention to roughly match can not be automated. SIFT (Scale invariant feature transform) algorithm to solve the image rotation, scaling and other issues, but for t...

متن کامل

Weighted Multi-Scale Image Matching Based on Harris- Sift Descriptor

According to the rotational invariance of Harris corner detector and the robustness of Sift descriptor. An improved Harris-Sift corner descriptor was proposed. At first, the algorithm given multi-scale strategy to Harris corner, improved corner counting method and removed redundant points at the same time, then, the corner was directly applied to low-pass Gaussian filter image. Based on the his...

متن کامل

A Sift-lbp Image Retrieval Model Based on Bag-of-features

Despite progress in image retrieval by using low-level features, such as colors, textures and shapes, the performance is still unsatisfied as there are existing gaps between low-level features and high-level semantic concepts (semantic gaps). In this research, we propose a novel image retrieval system based on bag-of-features (BoF) model by integrating scale invariant feature transform (SIFT) a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016